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ABSTRACT 

A class of axial ly  s y m m e t r i c  p rob lems  concerning a highly e l a s t i c  

c i r c u l a r  rubber  shee t  with: 

c i r c u l a r  i n c l u s i o n  under  outward rad ia l  loading at outer  boundary, and 

(3)  a rigid outer  boundary and a concentr ic  hole under  inward rad ia l  

loading around the hole a r e  solved. 

(1) a centered  c i r c u l a r  hole o r  ( 2 )  a r igid 

The different ia l  equation governing 

the deformat ion  is formula ted  under  the assumpt ions  of plane s t r e s s  

and incompress ib le ,  init ially i so t ropic  m a t e r i a l  and is integrated in 

the plane of pr inc ipa l  s t r e t c h  r a t io s .  

* 
This work was supported i n  p a r t  by NASA R e s e a r c h  Gran t  NsG-172-60 ,  
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INTRODUCTION 

Among va r ious  theo r i e s  of non-l inear  e las t ic i ty ,  a well known 

one i s  presented  comprehensively by Green  and Ze rna  [ 11. 

f r amework  of t h i s  theory  i s  based on the Cauchy-Green type of ten 

s t r a i n  m e a s u r e  and the consti tutive relat ion expres sed  by a s t r a h  e 

densi ty  function which i s  a function of the s t r a i n  invariants .  

ca se  of the theory  i s  for  the incompress ib le  m a t e r i a l s .  

The 

A spec ia l  

On the bas i s  of th i s  special  c a s e ,  the axially symmet r i ca l  de fo rma-  

t ions in the plane of a thin rubber  shee t  are  re formula ted  in th i s  paper  

in t e r m s  of a second o r d e r  non-linear different ia l  equation governing 

the deformation.  

conditions which cor respond t o  the p rob lems  of a circular imperfect ion 

(a hole o r  ;i rigid inclusion) in  the rubber  shee t  under  outward rad ia l  

e t re tching and the problem of a circular shee t  fixed along outer  boundary 

under  inward rad ia l  s t re tching by f o r c e s  applied along the boundary of a 

cen te r  hole as  shown in F ig .  1 ( a ,  b, c ) .  The r e su l t s  revea l  some in t e r -  

esting fea ther  of s t r e s s  concentration under  l a r g e  elastic deformat ions .  

The solutions a r e  obtained fo r  t h ree  types of boundary 

Rivlin and Thomas [ 21 have analyzed the s t r a in  dis t r ibut ion 

around a hole in a sheet  under  axial ly  symmet r i ca l  deformation,  however,  

given no r e s u l t s  on s t r e s s  concentratibn. 

obtained by a forward  integration method. 

have been computed f o r  the shee t  with rad ius  th ree  t i m e s  g r e a t e r  than 

the rad ius  of the hole in the undeformed s ta te .  In o r d e r  to  obtain the 

The i r  numer ica l  solution i s  

The r e su l t s  in the i r  paper  

solution f o r  an infinitely l a r g e  shee t  (or  a v e r y  small hole in a ' l a r g e  
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sheet) ,  the  integrat ion has  r a n g e  f r o m  the r ad ius  of the hole to infinity. 

In this  case, t h e i r  method proves  inefficient and e r ro r -accumula t ing  

a f t e r  integrat ing ove r  a l a r g e  d is tance .  

f r o m  the boundary of the hole,  they have specified the boundary c o  

a t  the  hole to  cons is t  both s t r e s s  f r e e  condition and a given hole expa 

sion rat io .  

duce the deformation is then a computed quantity.  

Since the i r  integrat ion s t a r  

The s t r e s s  applied at the outer  boundary n e c e s s a r y  to  p r o -  

For the i r  p roblem,  

the s t r e s s  a t  the outer  boundary i s  uaually p re sc r ibed  which d e t e r m i n e s  

the hole expansion rat io .  In this  c i r cums tance ,  their  integration 

procedure  i s  a n  inve r se  one which r e q u i r e s  a c o r r e c t  guess  on the hole 

expansion ra t io  in o r d e r  to  sa t i s fy  the p re sc r ibed  condition on the outer  

boundary. 

To reso lve  the problem arised f r o m  a n  infinite shee t ,  the 

va r i ab le s  in  the different ia l  equation a r e  t r ans fo rmed  into a new se t  of 

va r i ab le s  namely the pr incipal  s t r e t c h  r a t io s  in the rad ia l  and c i rcurn-  

ferential. d i r ec t ions .  The different ia l  equation r educes  to  a f i r s t  o r d e r  

one,  Since the s t r e t c h  r a t i o s  a r e  bounded, the integrat ion of the d i f fe ren-  

tial equation is a lways over  a finite region even f o r  an  infinitely l a r g e  

shee t .  In the plane of the pr incipal  s t r e t c h  ra t ios ,  the d i rec t ion  of 

integration can be conveniently chosen for  e i the r  increas ing  o r  d e c r e a s  - 
ing independent var iab le ,  depending on the desc r ibed  boundary conditions.  

The numer ica l  solutions are presented  fo r  all t h ree  types of 

p rob lems  with the s t r a i n  ene rgy  dens i ty  function suggested by Mooney [ 31 

which has the  f o r m  



where  I I a r e  s t r a i n  invar ian ts  and C C a r e  m a t e r i a l  cons tan ts  
1’ 2 1’ 2 

with d imens ion  of fo rce  pe r  unit a r e a  and a = C,/C1. Various  quant i t ies  

of in t e re s t  a r e  presented  graphical ly .  

The neo-Hookean m a t e r i a l  i s  a special  c a s e  when cy i s  equal to  

z e r o .  For  th i s  m a t e r i a l ,  the differentia1 equation i s  in a s i m p l e r  f o r m .  

Severa l  c lose  f o r m  approximate  solutions a r e  obtained f o r  va r ious  

reg ions  in the shee t  by solving the non-l inear  integral  equation in the 

l a t e r  sect ion of approximate  s o l u t i m s .  

ANALYSIS 

For a thin sheet with dimensions of the hole or inc lus ion  much 

g r e a t e r  than i ts  th ickness ,  the plane s t r e s s  assumpt ion  should lead to 

a good approximation.  By s y m m e t r y  of the problem,  the cyl indrical  

coordinate  with or ig in  at the cen te r  of the hole o r  inclusion is  employed,  

The deformat ions  under  considerat ion a r e  desc r ibed  by the mapping 

e = e  



where  ( p ,  8 ,  q) and ( r ,  0, z )  a r e  deformed and undeformed coordinates  

respect ively.  The pr incipal  s t r e t c h  r a t io s  in the rad ia l  and c i r c u m -  

f e ren t i a l  d i r ec t ions  a r e  respec t ive ly  
*. 

and the s t r e t c h  r a t i o  In the z di rec t ion  i s  

r - -  - 
l 3  P P '  

as a r e su l t  of incompress ib le  ma te r i a l  for  which A A X = 1. 1 . 2 3  

The s t r a i n  invariants  a r e  

2 2 2  
3 I I  = x1 f x2 + x 

I 3  = 1 

The non-zero s t r e s s  components measu red  pe r  unit deformed 

a r e a  a r e  given by [ 21 
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2 2 aw 2 aw = 2(X, - x ) (- 4- x2 7q t l  3 aI1 

2 2 aw 2 aw 
2 3 aI1 i a i 2  t = 2(X2 - h ) (- t x -1 

in the rad ia l  and c i r cumfe rcn t  ial d i r ec t ions  respect ively.  

The r e su l t an t s  of these  s t r e s s e s  m e a s u r e d  p e r  unit length along 

the c i r cumfe rence  in the respec t ive  d i rec t ions  a r e  

2 2 aw 2 aw 
1 2 

2 3 a1 
T2 = 2hX3 ( X  - X ) (- t X1 F) 

where  h i s  the thickness  of the sheet  in the undeformed s t a t e .  These  

s t r e s s  r e su l t an t s  mus t  sat isfy the equations of equi l ibr ium. 

equations a r e  automatical ly  sat ief ied.  

without the p re sence  of body forces ,  takes  the form 

T w o  of the 

The equation in the rad ia l  d i rec t ion ,  

in the de fo rmed  coordinate;  Expressing it in  t e r m s  of undeformed 

coordinate ,  equation ( 8 )  becomes  
, 
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Substituting equation (7), (4),  ( 3 )  and ( 1 )  into equation (9) ,  the 

differential  equation governing p ( r )  is  obtained as  follows 

3 
3r p ”  e 3r p ’ - - + -  3r - 

3 , 2 +  r p ” 4 -  2 $ 4  r 

3 2 

P P  2 1 3  P P  P P  

2 2 2 3 

r 3 4 
P - L i 3 r p ” + p f ’  r , p  2 p ’  

r P P ’  P ’  

By the uBe of equation ( 3 ) ,  the differential  equation i s  reduced to 

a f i r s t  order  one 

3 3  2 2  4 4  
3 t A I A Z  + U ( X ,  t )I2 4- t x 1 2  h } - -  ... - -  d X 1  

x 4 2  2 4 4  x2 2 3 3- A I A z  t (u(3X2 t A 1 2  X ) 

with the companion equation 

dr 
r 

- -  e 

x2 

- h2 

After solving equation ( 1 1 )  for a given boundary condition, the 

solution of the form 



can  be used  f o r  the integration of equation (12)’  giving the  relat ion of 

X and r .  Thus ,  the relat ion of p and f, is de te rmined  which ie  the 

solution to  equation (10).  

2 

Equation ( 1  1) h a s  no singularity.  It can  be integrated eas i ly  by 

any numer i ca l  p rocedure  for initial value p rob lems  in o rd ina ry  d i f fe r -  

ent ia l  equation. 

The error of th i s  p rocedure  is of O( d ) where  b i s  the inc remen t  

A commonly used one is the Runge-Kutta method [ 43, 

5 

of integrat ion.  

Since A arid A a r e  non-negative, the solution of equation (11 )  
1 2 

l i e s  in the f i r s t  quadrant  of A - A, plane, T h e r e  a r e  four  spec ia l  
1 u 

c u r v e s  in this  quadrant  represent ing  the solut ions:  ( I )  o n  the boundary 

of the hole.  ( 2 )  at infinity. ( 3 )  on the boundary of the r igid inclusion and 

a fixed boundary. (4) on a c i r c l e  in the rubber  shee t  where  t vanishes .  
2 

These  c u r v e s  a r e  shown in Fig.  2 and iabel led accordingly.  

The condition on the hole is t = 0 which gives the cu rve  ( l ) ,  
1 

At infinity A = X which i s  the cu rve  ( 2 ) .  For a fixed -112  
1 2 

XI = x 
2 

t = 0 yields  
2 

boundary p equals  T which gives the cu rve  ( 3 ) ,  x2 = 1. 

- 2  
X l  = X2 

c u r v e s  (1 )  and ( 2 )  desc r ibe  the probiem of a hole in the sheet  under  

which is the curve  (4). The solutions in the region be tween 

outward s t re tching.  The  solutions in the region between c u r v e s  (2)  and 

(3 )  d e s c r i b e  the  p rob lem of a r igid inclusion in the shee t  under  outward 

s t re tching.  Between curves (3 )  and (4)’ t h e r e  ex i s t  solutions of a 
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c i r c u l a r  shee t  with fixed outer  boundary under  inward s t re tch ing  f o r c e s  

applied around a cen te r  hole. This  c a n  be done a l s o  by consider ing a 

c i r c u l a r  shee t  with fixed outer  boundary being pulled downward a t  the 

cen te r  through a f r i c t ion le s s  sma l l  r ing  a6 shown in F ig .  3. 

t ions on the lef t  s ide  of cu rve  (4) ,  where  A 

Since a thin rubber  shee t  has  prac t ica l ly  n o  reh is tance  to  in-plane 

The  6 0 1 ~ -  

- 2  
5' < A 2  , give negative 

1 

compress ion ,  the plane s t r e s s  formulat ion c e a s e s  to d e s c r i b e  th i s  

phenomenon. Phys ica l ly ,  the sheet  is wrinkled in  such a region.  T h e r e ,  

f o r e ,  the curve  (4 )  a l s o  gives  the boundaries  of wrinkled zone. 

The integration of equation ( 1  1) can s t a r t  f r o m  any point in the 

f i r s t  quadrant  of A - X plane, however,  the s ta r t ing  point is  usual ly  

on one of the four  c u r v e s  where  boundary conditions a r e  given. 

1 2  

The 

integrat ion can  be made  in e i the r  d i rec t ion  ( increas ing  o r  d e c r e a s i n g  

d i rec t ion  of X ) ,  hf a check on the accu racy  is d e s i r e d ,  a round t r i p  2 

integration c a n  be made .  The r e s u l t s  shown in F i g .  2 have been obtained 

in this  manner .  The e r r o r  introduced af te r  a round t r i p  integration 

with increment  6 = 0 .01  is beyond the descr ip t ion  of a n  eight-place 

dec ima l  number .  

The solutions of equation ( 1  1) a l r eady  provide the information 

of s t r e s s  and s t r a i n  concentrat ions f o r  a l l  the p rob lems  cons idered .  

F o r  information on the deformat ions ,  f u r t h e r  integrat ions of equation 

(12)  is requi red .  

The r e s u l t s  for var ious  quantit ies of i n t e re s t  a r e  shown in the 

l a t e r  sect ion of numer i ca l  r e su l t s ,  



APPROXIMATE SOLUTIONS 

F o r  neo-Hookean m a t e r i a l  (a = 0) ,  equation ( 1  1) r educes  to the 

s imple r  form 

3 3  
1 2  

d X 2 = - -  ’2 3 t A l l z  

h 1 3 t X X  
4 2  = FO1’ X z )  

dX1 

Th i s  d i f fe ren t ia l  equation can  be changed to a non-l inear  integral  

equation of the f o r m  

where  X is a constant value of X in the domain of solutions d i scussed  
0 2 

in the previous section. 

The solutions of equation (15) can be obtained by the method of 

suc ce s s ive approximation 8,  

The convergence conditions fo r  th i s  p r o c e s s  a r e  given by Tr icomi  [ 51. 

The function F in equation (15) sa t i s f ies  those conditions.  In  pr inciple ,  

uniformly valid solutions can  he  obtained by successive approximations.  

9 
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For higher o r d e r  approximations however ,  the integrat ions involve 

a lgebra ic  complications.  

If we can choose a zero th  o r d e r  approximation c lose  to the exac t  

solution in some region then the f i r s t  o r d e r  approximation will be accu ra t e  

a t  l ea s t  in tha t  region. The approximate  solutions a r e  obtained in this  

manner  fo r  reg ions  n e a r  the boundaries  of the th ree  type8 of problems.  

For the region nea r  the hole,  the ze ro th  o r d e r  approximation i s  

chosen as 

The f i r s t  o r d e r  approximation 

\ i s  a value of X is obtained f r o m  equation ( i 6 ) ,  where 

of the hole.  

on the boundary 
2 

In  the region corresponding to  the l a r g e  value of P, a ze ro th  

o r d e r  approximation can be chosen as  

A?’ (X,) = x 2  

The f i r s t  o r d e r  approximation i e  
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(1) (X,) = 21 - x2 bD 

where Am i s  a value of X at  .r = 0 0 .  
2 

For  the regions near a fixed boundary and near the boundary o 

the wrinkle zone, the values of dX1 /dXZ  become large. X i a  very 
1 

sensitive to the variation of X It is  desirable to interchange the 
2‘ 

dependent and independent variables in equation (14). 

integral equation 

This leada to the 

I ’  

For  the region near a fixed boundary, a zeroth order approxima- 

where - X  here is a constant value of X 
0 

tion Le taken as 

which gives the first order approximation 

113 
where k=3 
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where  X i s  a value of A on + h e  fixed boundary. f 1 

For the region near the  boundary of wrinkle  zone, a ze ro th  o r d e r  

approximation i s  chosen as  

1 
X F ’ ( A , )  = - 

f l l  

The f i r s t  o r d e r  approximation 

(1) 2 1 8 (k + Aw /k 1 -k Xl + Xf .) t - l n  - 
k+!l k -kX + A  

3k x2 (j) = 

w w  

-1 t 8$- tan 

is obtained where  Aw is a value of h on the boundary of wrinkle  zone. 
1 

These  approximate  solutions a r e  plotted in F i g .  4 with the a c c u r -  

a t e  numer i ca l  solutions.  The r e s u l t s  show that regions of validity f o r  

the approximate  solutions a re  quite l a r g e .  

The c l a s s i c a l  e las t ic i ty  solutions a r e  contained in a smal l  

region where  A X 1, h2 % 1. The solution in the X - A plane is 
1 1 2  

- h2 
X1 (A,) = 2 1  

00 

Substituting equation (26) into equation (12) and integrating, the 

deformat ion  function 
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L 
p ( r )  = X r - t -  

00 r 

f o r  c l a s s i ca l  e las t ic i ty  i s  r ecove red  where  C is a constant  of integration. 

NUMERICAL RESULTS 

The numer i ca l  solutions a re  p resen ted  in this  sect ion for a hole 

or a rigid inclusion of r ad ius  a in the rubber  shee t  under  outward s t r e t c h -  

ing a t  infinity. T h r e e  va lues  of s t r e t c h  r a t io s  a t  infinity a r e  taken a s  

X = 1.25, 1 . 7  and 2. 1. 
00 

The deformat ions  a r e  shown in F i g .  5 ( a ,  b ) .  The solutions a r e  

a l s o  extended to the p rob lem of a c i r c u l a r  sheet  of r ad ius  a with fixed 

ou te r  boundary under  inward s t re tch ing .  The solutions f o r  th i s  p rob lem 

are  t e rmina ted  a t  an envelop where  t changed sign from posit ive to  negative,  2 

The s t r a i n  invar ian ts  I ( r )  and I ( r )  a r e  shown in Fig .  4 and 1 2 

Fig .  7 respec t ive ly .  The s t r a i n  ene rgy  dens i ty  function W f r )  lare shown 

in Fig. 8. 

F o r  the c a s e  of the hole,  the r e su l t s  shown a re  in good ag reemen t  

r 
a -  (for  1 5 - < 3) with the numer ica l  solutions obtained by Rivlin and 

Thomas  [ 23. The r e s u l t s  f o r  l a r g e r  va lues  of r a re  var i f ied  by the 

expe r imen t s  of Chu [ 63. F o r  v e r y  l a r g e  value of r ,  the r e s u l t s  approach  the 

exact  solution of a sheet  without imperfect ion.  

The s t r e s s  concentrat ion f a c t o r s  a t  the boundaries  of the hole and 

the r igid inclusion a re  defined as 
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respect ively.  

defined as  

The cor responding  s t r a i n  concentrat ion f a c t o r s  are  

These  f a c t o r s  a r e  plotted in F ig .  9 (a, b) as  functions of applied s t r e s s  

or ot re tch  ratio at infinity. 

CONCLUSION 

Under the  nonlinear e las t ic i ty  theory ,  the s t r e s s  concentration 

c h a r a c t e r  depends no t  only on the shape of the imperfect ion and the type 

of loading but the magnitude of the loading a s  w e l l .  

behavior of s t r e s s  concentrat ion a r e  contributed f r o m  both nonlinear 

consti tutive relat ion and effects  of l a r g e  deformation.  Phys ica l ly ,  a 

softening type s t r e s s - s t r a i n  re int ion should d e c r e a s e  s t r e s s  concen t r a -  

tion while a stiffening type should inc rease  it.  Geometr ica l ly ,  t he re  

a re  two  types of effects  f r o m  l a r g e  deformat ion .  

change of shape,  f o r  example ,  a c i r c u l a r  hoie m a y  be de fo rmed  to a n  

e l l ipse  l ike  hole under  ce r t a in  deformation.  

The nonlinear 

One is f r o m  the 

The o ther  effect  is due  to  
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the change of thickness  for some c ross - sec t ion .  

causes  the red is t r ibu t ion  of s t r e s s e s  over  the deformed a r e a ,  e n t e r s  the 

p rob lems  under  p re sen t  considerat ion.  

because of the s y m m e t r y  of the problems.  

Only the l a t t e r ,  which 

T h e r e  is no change of ehape 

The  s t r e s s  and s t r a i n  concentrat ion f a c t o r s ,  under  these  non- 

l i n e a r  influences,  a re  increas ing  with the increas ing  load for the Mooney 

m a t e r i a l ,  These  f a c t o r s  should depend also on the value of a. This  can  

be seen by the comparison of solutions in F ig .  2 and Fig .  4.  The differ- 

ence  of solutions between the c a s e s  a = 0 and LY = 0. 1 i s  more sub-  

s tanc ia l  when higher  s t r e t c h  r a t io  a r e  p r e s c r i b e d  a t  infinity, 
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